描述
开 本: 32开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787568541299
内容简介
从力学、物理学、天文学,直到化学、生物学、经济学与工程技术,无不用到数学……但提起数学,不少人仍觉得头痛,难以入门,甚至望而生畏。我以为要克服这个鸿沟还是有可能的……如果知道讨论对象的具体背景,则有可能掌握其实质……若停留在初等数学水平上,哪怕做了很多难题,似亦不会有助于对近代数学的了解。这就促使我们设想出一套“走向数学”小丛书,其中每本小册子尽量用深入浅出的语言来讲述数学的某一问题或方面,使工程技术人员、非数学专业的大学生,甚至具有中学数学水平的人,亦能懂得书中全部或部分含义与内容。这对提高我国人民的数学修养与水平,可能会起些作用。
目 录
续编说明
编写说明
前言
一 神奇的同伦方法:库恩多项式求根算法
§1.1 多项式方程求根的魔术植物栽培算法
1.1.1 库恩算法探胜
1.1.2 库恩算法经济吗?
1.1.3 库恩算法的内涵
§1.2 有益的讨论:正四面体能填满空间吗?
1.2.1 正三角形可以铺满平面
1.2.2 正四面体可以把空间填满吗?
1.2.3 算一下正四面体的二面角
1.2.4 问题的应用价值
§1.3 同样有趣的问题:圆周铺不满平面却能充满整个空间
1.3.1 铺填问题
1.3.2 圆周铺不满平面
1.3.3 试试用球面填空间
1.3.4 借用-直线,圆周即可填充空间
1.3.5 圆周巧填空间
编写说明
前言
一 神奇的同伦方法:库恩多项式求根算法
§1.1 多项式方程求根的魔术植物栽培算法
1.1.1 库恩算法探胜
1.1.2 库恩算法经济吗?
1.1.3 库恩算法的内涵
§1.2 有益的讨论:正四面体能填满空间吗?
1.2.1 正三角形可以铺满平面
1.2.2 正四面体可以把空间填满吗?
1.2.3 算一下正四面体的二面角
1.2.4 问题的应用价值
§1.3 同样有趣的问题:圆周铺不满平面却能充满整个空间
1.3.1 铺填问题
1.3.2 圆周铺不满平面
1.3.3 试试用球面填空间
1.3.4 借用-直线,圆周即可填充空间
1.3.5 圆周巧填空间
二 算法的成本理论
§2.1 数值计算的复杂性问题
2.1.1 惊人的成本:可怕的指数增长
——古印度数学故事
2.1.2 算法的目标:寻求多项式时间算法
§2.2 斯梅尔对牛顿算法计算复杂性的研究
2.2.1 代数基本定理与计算复杂性问题
2.2.2 经典的算法:多项式求根的牛顿算法
2.2.3 难于驾驭的牛顿方法:牛顿方法什么时候“听话”?
2.2.4 斯梅尔的创造:概率论定牛顿算法是多项式时间算法
2.2.5 非凡的进步:从最坏情形分析到概率情形分析
§2.3 库恩算法的计算复杂性
2.3.1 库恩多项式零点算法的计算复杂性
2.3.2 积木结构的成本估计
2.3.3 引理的初等证明
2.3.4 算法之比较和配合
§2.4 数值计算复杂性理论的环境与进展
2.4.1 影响巨大的斯梅尔学派
2.4.2 数值计算复杂性讨论的学科环境
2.4.3 数值计算方法及其复杂性讨论的动力系统框架
2.4.4 经典的牛顿型迭代
……
三 单纯同伦方法的可行性
四 连续同伦方法的应用实例:多复变罗歇定理的证明
五 同伦方法的经济学背景:一般经济均衡理论
六 同伦方法的传奇人物:斯梅尔,斯卡夫和李天岩
参考文献
附录
附录1 映像度机器算法平话
附录2 阿罗不可能定理溯源
数学高端科普出版书目
评论
还没有评论。