fbpx

[email protected]

购物车

 查看订单

  • 我的帐户
东东购 | EasternEast
  • 中文书店
    • 畅销排行榜
      • 小说 畅销榜
      • 童书 畅销榜
      • 外语畅销榜
      • 管理畅销榜
      • 法律畅销榜
      • 青春文学畅销榜
    • 热门分类
      • 社会小说
      • 成功/励志 畅销榜
      • 人物传记
      • 大陆原创
      • 绘本童书
      • 影视小说
    • 文学推荐
      • 文集
      • 戏剧
      • 纪实文学
      • 名家作品
      • 民间文学
      • 中国现当代随笔
    • 新书热卖榜
      • 小说 新书热卖榜
      • 青春文学 新书热卖榜
      • 童书 新书热卖榜
      • 管理 新书热卖榜
      • 成功/励志 新书热卖榜
      • 艺术 新书热卖榜
  • 精选分类
    • 小说
    • 保健养生
    • 烹饪/美食
    • 风水/占卜
    • 青春文学
    • 童书
    • 管理
    • 成功/励志
    • 文学
    • 哲学/宗教
    • 传记
    • 投资理财
    • 亲子家教
    • 动漫/幽默
    • 法律 Legal
    • 经济 Economics
    • 所有分类
  • 关于东东
  • 帮我找书
搜索
首页自然科学物理学非线性光学(第4版)(英文版)物理学经典 ELSEVIER 爱思唯尔 Nonlinear Optics Fourth Edition

非线性光学(第4版)(英文版)物理学经典 ELSEVIER 爱思唯尔 Nonlinear Optics Fourth Edition

驾驭光之奥秘,尽在高端经典——博伊德《非线性光学》第四版,助你探索前沿科研与教学新境界!

作者:美〕罗伯特 · 博伊德 (Robert W. Boyd) 出版社:世界图书出版公司 出版时间:2025年04月  原版书名:Nonlinear Optics Fourth Edition 

ISBN: 9787523218563
年中特卖用“SALE15”折扣卷全场书籍85折!可与三本88折,六本78折的优惠叠加计算!全球包邮!
trust badge

EUR €73.99

类别: 自然科学 新书热卖榜, 物理学 SKU:686442ad32b4b56dec0aff4d 库存: 有现货
  • 描述
  • 评论( 0 )

描述

开 本: 16开纸 张: 胶版纸包 装: 平装-胶订是否套装: 否国际标准书号ISBN: 9787523218563

编辑推荐

  • 【大师执笔】

国际光学荣誉“查尔斯-哈德-汤恩斯奖章”(Charles Hard Townes Medal)和“弗雷德里克-艾夫斯奖章/贾鲁斯-奎恩奖”(Frederic Ives Medal / Jarus W. Quinn Prize)得主、非线性光学奠基人罗伯特·博伊德教授撰写,凝聚其数十年教学与科研经验。书中理论框架与前沿成果均源自其开创性研究,堪称领域内不可替代的高端教材。

  • 【深度广度兼具,紧跟学科前沿】

第四版更新为国际单位制,新增等离子体非线性光学、凯尔迪什理论、隧道电离等前沿章节,覆盖从基础极化率到超快强场非线性现象的全谱系内容,既保留文献衔接性,又融入前沿研究突破,是探索非线性光学动态发展的指南。

  • 【教学友好,适配多层级需求】

特色阶梯式教学结构:基础章节辅以详尽符号学解析,助力初学者跨越理论门槛;高阶章节增设相位匹配、光折射效应等专题,满足博士生与科研人员深度需求。可灵活裁剪为本科生通识课或研究生进阶课教材,横跨光学、物理、工程等多学科场景。

 

内容简介

非线性光学是一门研究强激光与物质相互作用的学科。罗伯特·博伊德教授所著的这本《非线性光学》是一本非线性光学教科书,适合初学的研究生阅读。本书旨在介绍非线性光学领域的基本概念,使学生能够在这一领域开展独立研究。作者在罗切斯特大学的课程中成功地使用了本书的第一个版本。参加该课程的学生通常从高年级学生到高年级博士生不等,其学科包括光学、物理、化学、电子工程、机械工程和化学工程等。本书可用于非线性光学、量子光学、量子电子学、激光物理学、电子光学和现代光学等领域的研究生课程。通过删除一些较难的章节,本书也适合高年级本科生使用;另一方面,书中的一些内容相当高深,不仅适合高年级研究生使用,而且可以作为科学家的工具书。

作者简介

罗伯特·博伊德(Robert W. Boyd)教授拥有麻省理工学院物理学学士学位(1969年)和加州大学伯克利分校物理学博士学位(1977年)。他的博士论文由 Charles H. Townes 教授指导,内容涉及利用非线性光学技术进行天文学红外探测。博伊德教授于 1977 年加入罗切斯特大学光学研究所,自 1987 年以来一直担任光学教授一职。此外,他还兼任物理学教授。2002 年,他被任命为首位 M. Parker Givens 冠名光学教授。2010 年,他成为渥太华大学物理教授和加拿大量子非线性光学卓越研究主席,同时保留了与罗切斯特大学的联系。博伊德是美国光学学会(OSA)院士,2016年,他因 “对非线性光学领域做出的基础性贡献,包括光速控制方法、量子成像方法和复合非线性光学材料的开发 ”而获得查尔斯-哈德-汤恩斯奖章(Charles Hard Townes Medal)。2023年,他因“在非线性光学(包括慢光、量子成像以及纳米复合光学材料和超材料的开发)领域做出开创性贡献”而获得弗雷德里克-艾夫斯奖章/贾鲁斯-奎恩奖(Frederic Ives Medal / Jarus W. Quinn Prize)。

目  录

Preface to the Fourth Edition

Preface to the Third Edition

Preface to the Second Edition

Preface to the First Edition

Chapter 1: The Nonlinear Optical Susceptibility

1.1 Introduction to Nonlinear Optics

1.2 Descriptions of Nonlinear Optical Processes

1.2.1 Second-Harmonic Generation

1.2.2 Sum- and Difference-Frequency Generation

1.2 3 Sum-Frequency Generation  

1.2.4 Difference-Frequency Generation

1.2.5 Optical Parametric Oscillations

1.2.6 Third-Order Nonlinear Optical Processes

1.2.7 Third-Harmonic Generation

1.2.8 Intensity-Dependent Refractive Index

1.2.9 Third-Order Interactions (General Case)

1.2.10 Parametric versus Nonparametric Processes

1.2.11 Saturable Absorption

1.2.12 Two-Photon Absorption

1.2.13 Stimulated Raman Scattering

1.3 Formal Definition of the Nonlinear Susceptibility

1.4 Nonlinear Susceptibility of a Classical Anharmonic Oscillator

1.4.1 Noncentrosymmetric Media

1.4.2 Miller’s Rule

1.4.3 Centrosymmetric Media

1.5 Properties of the Nonlinear Susceptibility

1.5.1 Reality of the Fields

1.5.2 Intrinsic Permutation Symmetry

1.5.3 Symmetries for Lossless Media

1.5.4 Field Energy Density for a Nonlinear Medium

1.5.5 Kleinman’s Symmetry

1.5.6 Contracted Notation

1.5.7 Effective Value of d (deff)

1.5.8 Spatial Symmetry of the Nonlinear Medium

1.5.9 Influence of Spatial Symmetry on the Linear Optical Properties of a Material Medium

1.5.10 Influence of Inversion Symmetry on the Nonlinear Second-Order Response

1.5.11 Influence of Spatial Symmetry on the Second-Order Susceptibility

1.5.12 Number of Independent Elements of xijk(2) (ω3, ω2,ω1)

1.5.13 Distinction between Noncentrosymmetric and Cubic Crystal Classes

1.5.14 Distinction between Noncentrosymmetric and Polar Crystal Classes

1.5.15 Influence of Spatial Symmetry on the Third-Order Nonlinear Response

1.6 Time-Domain Description of Optical Nonlinearities

1.7 Kramers-Kronig Relations in Linear and Nonlinear Optics

1.7.1 Kramers-Kronig Relations in Linear Optics

1.7.2 Kramers-Kronig Relations in Nonlinear Optics

Problems

References

Chapter 2: Wave-Equation Description of Nonlinear Optical Interactions

2.1 The Wave Equation for Nonlinear Optical Media

2.2 The Coupled-Wave Equations for Sum-Frequency Generation

2.2.1 Phase-Matching Considerations

2.3 Phase Matching

2.4 Quasi-Phase-Matching (QPM)

2.5 The Manley-Rowe Relations

2.6 Sum-Frequency Generation

2.7 Second-Harmonic Generation

2.7.1 Applications of Second-Harmonic Generation

2.8 Difference-Frequency Generation and Parametric Amplification

2.9 Optical Parametric Oscillators

2.9.1 Influence of Cavity Mode Structure on OPO Tuning

2.10 Nonlinear Optical Interactions with Focused Gaussian Beams

2.10.1 Paraxial Wave Equation

2.10.2 Gaussian Beams

2.10.3 Harmonic Generation Using Focused Gaussian Beams

2.11 Nonlinear Optics at an Interface

2.12 Advanced Phase Matching Method

Problems

References

Chapter 3: Quantum-Mechanical Theory of the Nonlinear Optical Susceptibility

3.1 Introduction

3.2 Schrodinger Equation Calculation of the Nonlinear Optical Susceptibility

3.2.1 Energy Eigenstates

3.2.2 Perturbation Solution to Schrödinger’s Equation

3.2.3 Linear Susceptibility

3.2.4 Second-Order Susceptibility

3.2.5 Third-Order Susceptibility

3.2.6 Third-Harmonic Generation in Alkali Metal Vapors

3.3 Density Matrix Formulation of Quantum Mechanics

3.3.1 Example: Two-Level Atom

3.4 Perturbation Solution of the Density Matrix Equation of Motion

3.5 Density Matrix Calculation of the Linear Susceptibility

3.5.1 Linear Response Theory

3.6 Density Matrix Calculation of the Second-Order Susceptibility

3.6.1 χ(2) in the Limit of Nonresonant Excitation

3.7 Density Matrix Calculation of the Third-Order Susceptibility

3.8 Electromagnetically Induced Transparency

3.9 Local-Field Effects in the Nonlinear Optics

3.9.1 Local-Field Effects in Linear Optics

3.9.2 Local-Field Effects in Nonlinear Optics

Problems

References

Chapter 4: The Intensity-Dependent Refractive Index

4.1 Descriptions of the Intensity-Dependent Refractive Index

4.2 Tensor Nature of the Third-Order Susceptibility

4.2.1 Propagation through Isotropic Nonlinear

4.3 Nonresonant Electronic Nonlinearities

4.3.1 Classical, Anharmonic Oscillator Model of Electronic Nonlinearities

4.3.2 Quantum-Mechanical Model of Nonresonant Electronic Nonlinearities

4.3.3 χ(3) in the Low-Frequency Limit

4.4 Nonlinearities Due to Molecular Orientation

4.4.1 Tensor Properties of χ(3) for the Molecular Orientation Effect

       4.5 Thermal Nonlinear Optical Effects

4.5.1 Thermal Nonlinearities with Continuous-Wave Laser Beams

4.5.2 Thermal Nonlinearities with Pulsed Laser Beams

4.6 Semiconductor Nonlinearities

4.6.1 Nonlinearities Resulting from Band-to-Band Transitions

4.6.2 Nonlinearities Involving Virtual Transitions

4.7 Concluding Remarks

Problems

Reference

Chapter 5: Molecular Origin of the Nonlinear Optical Response

5.1 Nonlinear Susceptibilities Calculated Using Time-Independent Perturbationin

5.1.1 Hydrogen Atom

5.1.2 General Expression for the Nonlinear Susceptibility in the Quasi-Static Timit

5.2 Semiempirical Models of the Nonlinear Optical Susceptibility

Model of Boling, Glass, and Owyoung

5.3 Nonlinear Optical Properties of Conjugated Polymers

5.4 Bond-Charge Model of Nonlinear Optical Properties

5.5 Nonlinear Optics of Chiral Media

5.6 Nonlinear Optics of Liquid Crystals

Problems

References

Chapter 6: Nonlinear Optics in the Two-Level Approximation

6.1 Introduction

6.2 Density Matrix Equations of Motion for a Two-Level Atom

6.2.1 Closed Two-Level Atom

6.2.2 Open Two-Level Atom

6.2.3 Two-Level Atom with a Non-Radiatively Coupled Third Level

6.3 Steady-State Response of a Two-Level Atom to a Monochromatic Field

6.4 Optical Bloch Equations

6.4.1 Harmonic Oscillator Form of the Density Matrix Equation

6.4.2 Adiabatic-Following Limit

       6.5 Rabi Oscillations and Dressed Atomic States

6.5.1 Rabi Solution of the Schrödinger Equation

6.5.2 Solution for an Atom Initially in the Ground State

6.5.3 Dressed States

6.5.4 Inclusion of Relaxation Phenomena

       6.6 Optical Wave Mixing in Two-Level Systems

6.6.1 Solution of the Density Matrix Equations for a Two-Level Atom in the Presence of Pump and Probe Fields

6.6.2 Nonlinear Susceptibility and Coupled-Amplitude Equations

Problems

References

Chapter 7: Processes Resulting from the Intensity-Dependent Refractive Index

7.1 Self-Focusing of Light and Other Self-Action Effects

7.1.1 Self-Trapping of Light

7.1.2 Mathematical Description of Self-Action Effects

7.1.3 Laser Beam Breakup into Many Filaments

7.1.4 Self-Action Effects with Pulsed Laser Beam

7.2 Optical Phase Conjugation

7.2.1 Aberration Correction by Phase Conjugation

7.2.2 Phase Conjugation by Degenerate Four-Wave Mixing

7.2.3 Polarization Properties of Phase Conjugation

7.3 Optical Bistability and Optical Switchin

7.3.1 Absorptive Bistability

7.3.2 Refractive Bistabilit

7.3.3 Optical Switching

7.4 Two-Beam Coupling

7.5 Pulse Propagation and Temporal Soliton

7.5.1 Self-Phase Modulation

7.5.2 Pulse Propagation Equation

7.5.3 Temporal Optical Soliton

Problems

References

Chapter 8: Spontaneous Light Scattering and Acoustooptics

8.1 Features of Spontaneous Light Scattering

8.1.1 Fluctuations as the Origin of Light Scattering

8.1.2 Scattering Coeffcient

8.1.3 Scattering Cross Sectio

8.2 Microscopic Theory of Light Scattering

8.3 Thermodynamic Theory of Scalar Light Scattering

8.3.1 Ideal Gas

8.3.2 Spectrum of the Scattered Light

8.3.3 Brillouin Scattering

8.3.4 Stokes Scattering (First Term in Eq. (8.3.36))

              8.3.5 Anti-Stokes Scattering (Second Term in Eq. (8.3.36))

8.3.6 Rayleigh Center Scattering

8.4 Acoustooptics

8.4.1 Bragg Scattering of Light by Sound Waves

8.4.2 Raman-Nath Effect

Problems

References

Chapter 9: Stimulated Brillouin and Stimulated Rayleigh Scattering

9.1 Stimulated Scattering Processes

9.2 Electrostriction

9.3 Stimulated Brillouin Scattering (Induced by Electrostriction)

9.3.1 Pump Depletion Effects in SBS

9.3.2 SBS Generator

9.3.3 Transient and Dynamical Features of SBS

9.4 Phase Conjugation by Stimulated Brillouin Scattering

9.5 Stimulated Brillouin Scattering in Gases

9.6 General Theory of Stimulated Brillouin and Stimulated Rayleigh Scattering

9.6.1 Appendix: Definition of the Viscosity Coefficients

Problems

References

Chapter 10: Stimulated Raman Scattering and Stimulated Rayleigh-Wing Scattering

10.1 The Spontaneous Raman Effect

10.2 Spontaneous versus Stimulated Raman Scattering

10.3 Stimulated Raman Scattering Described by the Nonlinear Polarization

10.4 Stokes-Anti-Stokes Coupling in Stimulated Raman Scattering

10.4.1 Dispersionless, Nonlinear Medium without Gain or Loss

10.4.2 Medium without a Nonlinearity

10.4.3 Stokes-Anti-Stokes Coupling in Stimulated Raman Scattering

10.5 Coherent Anti-Stokes Raman Scattering

10.6 Stimulated Rayleigh-Wing Scattering

10.6.1 Polarization Properties of Stimulated Rayleigh-Wing Scatterings

Problems

References

Chapter 11: The Electrooptic and Photorefractive Effects

11.1 Introduction to the Electrooptic Effect

11.2 Linear Electrooptic Effect

11.3 Electrooptic Modulators

11.4 Introduction to the Photorefractive Effect

11.5 Photorefractive Equations of Kukhtarev et al.

11.6 Two-Beam Coupling in Photorefractive Materials

11.7 Four-Wave Mixing in Photorefractive Materials

11.7.1 Externally Self-Pumped Phase-Conjugate Mirror

11.7.2 Internally Self-Pumped Phase-Conjugate Mirror

11.7.3 Double Phase-Conjugate Mirror

11.7.4 Other Applications of Photorefractive Nonlinear Optics

Problems

References

Chapter 12: Optically Induced Damage and Multiphoton Absorption

12.1 Introduction to Optical Damage

12.2 Avalanche-Breakdown Model

12.3 Influence of Laser Pulse Duration

12.4 Direct Photoionization

12.5 Multiphoton Absorption and Multiphoton lonization

12.5.1 Theory of Single- and Multiphoton Absorption and Fermi’s Golden Rule

12.5.2 Linear (One-Photon) Absorption

12.5.3 Two-Photon Absorption

12.5.4 Multiphoton Absorption

Problems

References

Chapter 13: Ultrafast and Intense-Field Nonlinear Optics

13.1 Introduction

13.2 Ultrashort-Pulse Propagation Equation

13.3 Interpretation of the Ultrashort-Pulse Propagation Equation

13.3.1 Self-Steepening

13.3.2 Space-Time Coupling

13.3.3 Supercontinuum Generation

13.4 Intense-Field Nonlinear Optics

13.5 Motion of a Free Electron in a Laser Field

13.6 High-Harmonic Generation

13.7 Tunnel Ionization and the Keldysh Model

13.8 Nonlinear Optics of Plasmas and Relativistic Nonlinear Optics

13.9 Nonlinear Quantum Electrodynamics

Problem

References

Chapter 14: Nonlinear Optics of Plasmonic Systems

14.1 Introduction to Plasmonics

14.2 Simple Derivation of the Plasma Frequency

14.3 The Drude Model

14.4 Optical Properties of Gold

14.5 Surface Plasmon Polariton

14.6 Electric Field Enhancement in Plasmonic Systems

Problems

References

Appendices

Appendix A The SI System of Units

A.1 Energy Relations and Poynting’s Theorem

A.2 The Wave Equation

A.3 Boundary Conditions

Appendix B The Gaussian System of Units

Appendix C Systems of Units in Nonlinear Optics

C.1 Conversion between the Systems

Appendix D Relationship between Intensity and Field Strength

Appendix E Physical Constants

References

Index

前  言

As I was writing this Fourth Edition of my book Nonlinear Optics, I found the opportunity to recall the history of my intrigue with the study of nonlinear optics. I first learned about nonlinear optics during my senior year at MIT. I was taking a course in laser physics taught by Dr. Abraham Szoke. A special topic covered in the course was nonlinear optics, and Prof. Bloembergen’s short book on the topic (Nonlinear Optics, Benjamin, 1965) was assigned as supplemental reading. I believe that it was at that point in my life that I fell in love with nonlinear optics. I am attracted to nonlinear optics for the following reasons. This topic is founded on fundamental physics including quantum mechanics and electromagnetic theory. The laboratory study of nonlinear optics involves sophisticated experimental methods. Moreover, nonlinear optics spans the disciplines of pure physics, applied physics, and engineering. In preparing this Fourth Edition, I have corrected some typos that made their way into the Third Edition. I also tightened up and clarified the wording in many spots in the text. In addition, I added new material as follows. I added a new chapter, Chapter 14, dealing with the nonlinear optics of plasmonic systems. In Chapter 2 I added a new section on advanced phase matching concepts. These concepts include noncollinear phase matching, critical and noncritical phase matching, phase matching aspects of spontaneous parametric down conversion, the tilted pulse-front method for THz generation, and Cherenkov phase matching. The first three sections of Chapter 13 as well as Section 13.8 have been substantially rewritten to improve the pedagogical structure. A new section (Section 13.7) has been added that deals with Keldysh theory and tunneling ionization. Section 4.6 now includes a simple derivation of the Debye-Hückel screening equation. Finally, at the level of detail, I have included the following new figures: Fig.2.3.4, Fig.2.10.2, Fig.5.6.2, Fig. 7.5.2, and Fig. 7.5.4.

I give my great thanks to the many students and colleagues who have made suggestions regarding the presentations given in the book and who have spotted typos and inaccuracies in the Third Edition. My thanks go to Zahirul Alam, Aku Antikainen, Erik Bélanger, Nick Black. Frédéric Bouchard, Thomas Brabec, Steve Byrnes, Enrique Cortés-Herrera, Israel De Leon, Justin Droba, Patrick Dupre, James Emery, Marty Fejer, Alexander Gaeta, Enno Giese, Mojtaba Hajialamdari, Henry Kapteyn, Stefan Katletz, Kyung Seung Kim, Samuel Lemieux, Yanhua Lu. Svetlana Lukishova, Giulia Marcucci, Adrian Melissinos, Jean-Michel Ménard, Mohammad Mirhosseini, Margaret Murnane, Geoffrey New, Rui Qi, Markus Raschke, Razif Razali, Orad Reshef, Matthew Runyon, Akbar Safari, Mansoor Sheik-Bahae, John Sipe, Arlee Smith, Phillip Sprangle, Andrew Strikwerda, Fredrik Sy, and Anthony Vella. I also give my thanks to the many classroom students not mentioned above for their thought-provoking questions and for their overall intellectual curiosity.

 

Robert W. Boyd

Ottawa, ON, Canada

Rochester, NY, United States

January 2, 2020

抢先评论了 “非线性光学(第4版)(英文版)物理学经典 ELSEVIER 爱思唯尔 Nonlinear Optics Fourth Edition” 取消回复

评论

还没有评论。

相关产品

加入购物车

光学原理——光的传播、干涉和衍射的电磁理论(第7版)

EUR €58.99
阅读更多
缺货

数学物理方法 II(中译本)

EUR €58.99
评分 5.00 / 5
加入购物车

新千年版 费恩曼物理学讲义(第3卷)

EUR €68.97
加入购物车

走进费曼丛书 物理定律的本性

EUR €18.99

东东购的宗旨是服务喜爱阅读中文书籍的海外人民,提供一个完善的购书平台,让国人不论何时何地都能沉浸在书香之中,读着熟悉的中文字,回忆着家乡的味道。


安全加密结账 安心网络购物 支持Paypal付款

常见问题

  • 货物配送
  • 退换货政策
  • 隐私政策
  • 联盟营销

客户服务

  • 联系东东
  • 关于东东
  • 帮我找书
  • 货物追踪
  • 会员登入

订阅最新的优惠讯息和书籍资讯

选择币别

EUR
USD
CAD
AUD
NZD
NOK
GBP
CHF
SEK
CNY
UAH
ILS
SAR
MXN
KRW
MYR
SGD
HUF
TRY
JPY
HKD
TWD
facebookinstagram
©2020 东东购 EasternEast.com

限时特卖:用“SALE15”优惠券全场书籍85折!可与三本88折,六本78折的优惠叠加计算。 忽略